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ABSTRACT 
Sinusoidal gravity modulation fields imposed on two-dimensional Rayleigh-Benard convection flow are 
studied to understand the effects of periodic source (g-jitter) on fluids system and heat transfer mechanism. 
The transient Navier-Stokes and energy equations are solved by semi-implicit operator splitting finite 
element method. Results include two sets. One is considered at normal terrestrial condition and the other 
one is related to low-gravity condition. Under low-gravity condition the research focuses on the effects of 
modulation frequency and direction in order to find out the critical frequency for heat transfer mechanism 
transferring from conduction to convection. 

KEY WORDS Rayleigh-Benard convection Gravity modulation 

INTRODUCTION 

Benard convection occurring in modulated gravitational fields has been of great interest because 
of the induced change in the stability bounds and its practical applications. A quiescent fluid 
layer heated uniformly from below will develop an unstable convection flow caused by the 
adverse density distribution at a Rayleigh number greater than some critical value. A sinusoidal 
gravity modulation (g-jitter) under certain combinations of the flow parameters may stabilize 
this phenomenon1. Similarly, a static stable fluid heated from above may be destabilized by a 
sinusoidal gravity modulation at certain flow field conditions. According to the literature2,3, the 
sinusoidal modulated temperature field can influence the convective flow characteristics; and 
the interaction between the sinusoidal modulated temperature field and the gravitational field 
may generate a mean steady flow. Recently, Wheeler et al.4 investigated the stability of this 
problem in high frequency gravity modulation. 

The concern over the strong natural convection adversely affecting materials processing under 
a low-gravity environment such as space lab is becoming more and more important. In these 
space environments, there are a lot of perturbations created by mechanical vibrations, solar 
drag, crew activities and orbiter maneuvres, etc. They can have a serious effect on the flow field 
at low gravity status. Following the study by Knabe and Eilers5, the maximum vibration 
amplitude of these motions is of order 10 - 2 -10 - 3 g 0 where g0 is the terrestrial gravity; and these 
disturbances become important since the orbital gravity is also small compared to g0. Therefore, 
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the investigation of the g-jitter effect in a low-gravity environment is interesting and important 
in practical applications. A summary of the related work directed towards high-frequency 
vibration at zero-g level is also available in Gershuni's research6. The main objective of this 
work is to simulate a liquid metal fluid in low-gravity environments. A parametric study is 
conducted to determine the critical modulation frequency for both vertical and horizontal 
modulations. 

A two-dimensional rectangular cavity with aspect ratio 0.5 is set as the physical domain. All 
the numerical results demonstrate an agreement with the previous literature1,7,8. 

STATEMENT OF THE PROBLEM 

In this problem, the transient 2-D incompressible Navier-Stokes and energy equations are 
considered. These equations are non-dimensionalized, using the width of the cavity L as the 
length scale, px2/L2 as the pressure scale and L2/a, a/L as the thermal diffusion time and velocity 
scale, respectively, p and a are the density and thermal diffusivity of the fluid, respectively. The 
temperature is non-dimensionalized by using the ratio (T* — T*m)/(T*h — T*c) where T*h and T*c 
represent the hot wall and cold wall temperatures, respectively, and T*m is the mean temperature 
in the cavity. Applying these scales, the non-dimensionalized equations are written as: 

Continuity: 

(1) 

x-momentum: 
(2) 

y-momentum: 

(3) 

Energy: 

(4) 

where: 
(5) 

Here u and v are velocities along the x and y directions, respectively, and θ, p and t are 
temperature, pressure and time, respectively. These equations represent the unsteady, laminar 
flow with Boussinesq approximation for the buoyancy effect. Depending on the application of 
gravity modulation direction, one of the source terms (either S1 or S2) is set equal to zero. Fm 
and η in (5) represent the constant mean gravity level and maximum gravity oscillation amplitude, 
respectively. The ф stands for random phase angle, which is set equal to zero for sinusoidal 
oscillation. The dimensionless parameters appearing in the equations include the 
non-dimensionalized frequency ω defined as ω = ΩL2/a where Ω is the dimensional frequency, 
the Prandtl number Pr = v/a where v is the kinematic viscosity, and the Rayleigh number 
Ra = [gβL3(T*h — T*c)]/av where g and β stands for the gravitational constant, and thermal 
expansion ratio, respectively. 

Because the governing equations are two-dimensional and time-dependent, a set of proper 
boundary conditions and initial conditions is necessary. Following the physical problem 
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definition, the boundary conditions are written as (see Figure 1): 
u = v = 0, θ = θh = 0.5, (y = 0) (6) 

u = v = 0, θ = θC = -0.5, (y = H/L) (7) 

(8) 

METHOD OF SOLUTION 

We presented the finite element formulation used in detail in our previous work9,10. Here we 
summarize briefly the major ingredients of the formulation and resulting equations, and point 
out some important features regarding the practical application of these equations. The 
continuous domain Ω is divided into non-overlapping 4-noded bilinear quadrilateral elements. 
Thus the unknown variables u, v, p, and θ, are approximated by bilinear interpolation functions 
in each local finite element as: 

The Galerkin finite element method is used for spatial discretization. A semi-implicit time-splitting 
scheme is used for the temporal discretization. The solution procedure of the system is 
accomplished by splitting the equation into parts: the non-linear terms are advanced by the 
explicit second order Adams-Bashforth scheme, and the linear diffusion terms are advanced 
by an implicit Euler scheme. 
Step 1 

At the first step, a set of equations is solved without inclusion of the pressure term: 

(9) 

where ng is the unit vector along the gravity direction. After this intermediate step, the flow field 
is not incompressible. 
Step 2 

The pressure is then used to enforce incompressibility. A Poisson equation for the pressure 
is obtained by taking the divergence of the momentum equation. Assume that un+l is 
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incompressible, the equation for the pressure is: 

(10) 

Using the intermediate velocity ū and pressure p, we correct the final velocity as: 

(11) 
Step 3 

A similar procedure is used for the temperature calculation θn+1by solving the energy equation: 

(12) 

When the finite element approximation is applied to (9)—(12) by the Galerkin method, it yields 
non-linear simultaneous ordinary differential equations of the form: 
for Step 1: 

(13) 
where M is the consistent mass matrix, K the advection matrix, S the diffusion matrix, and F1 
results from the imposition of natural boundary conditions and the exertion of a body force. 
The essential boundary conditions for the velocity field are imposed in this step. The convective 
terms are treated explicitly and the viscous terms are treated implicitly making this procedure 
semi-implicit. 
for Step 2: 

The spatially discrete form of problem (10) and (11) is: 

(14) 

(15) 
(16) 

where A, C and D are Laplacian, pressure gradient and divergence matrices, respectively. The 
Poisson equation system for the pressure is computed only once, is assembled, modified for the 
pressure boundary conditions, and factored (only once). Then at each time step, or iteration, it 
is only necessary to perform a forward and backward substitution to obtain the pressure. 
for Step 3: 

The spatially discrete form of problem (12) is: 
(17) 

where F2 results from the natural boundary condition. The essential boundary conditions for 
the temperature field is imposed in this step. 

RESULTS AND DISCUSSION 

All the numerical results were calculated with zero initial velocity, pressure and temperature 
field. In consideration of computational cost and accuracy by observing Table 1, the results we 
obtained are calculated by uniform meshes 20 x 40, 20 x 60 and 20 x 80 for aspect ratios 0.5, 
0.33, and 0.25, respectively. According to the periodic phenomena of the results with g-jitter 
effect, a time step is determined by defining each period including how many time steps. A fewer 
time steps per period are used in earlier stage; then more steps per period are used to calculate 
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Table I Influence of finite element mesh on the solution 

Mesh 

15x30 
20x40 
20x50 

Ra = 4500, ω = 1400 
η = 19.6 (vertical jitter) 

Nuh Nuc Max. |ψ| 

1.958 1.958 0.0277 
1.968 1.968 0.0288 
1.975 1.975 0.0292 

Ra = 4500, ω = 1400 
η = 19.6 (horizontal jitter) 

Nuh Nuc Max. |ψ| 

4.127 4.127 8.33 
4.200 4.200 8.53 
4.240 4.240 8.53 

Table 2 Influence of time step on the solution (calculated by 25 x 

Time steps 
per period 

50 
100 
150 

Ra = 4500, ω = 1400 
η = 19.6 (vertical jitter) 

Nuh Nuc 

1.976 1.976 
1.975 1.975 
1.974 1.974 

Max. |ψ| 

0.0233 
0.0292 
0.0344 

ω = 45.5, zero-g 
(vertical jitter) 

Nuh Nuc Max.|ψ| 

2.000 2.000 0.0302 
2.000 2.000 0.0244 
2.000 2.000 0.0206 

50 mesh) 

ω = 200, zero-g 
(horizontal jitter) 

Nuh Nuc 

2.004 2.004 
2.005 2005 
2.005 2.005 

Ra = 4500, ω = 1400 
η = 19.6 (horizontal jitter) 

Nuh Nuc 

4.248 4.248 
4.240 4.240 
4.225 4.225 

Max. 

8.57 
8.53 
8.46 

Max.|ψ| 

0.205 
0.245 
0.262 

|ψ| 

the time-averaged results. Usually, the first value is chosen as 50 for most of the results and the 
second value is set 100. The relative difference in global and local properties between time steps 
is small for convective results. For conductive type results in normal gravity environment, the 
difference in local properties is big, but the global properties are retained the same. The results 
for different time steps in normal gravity state are listed in Table 2. 

The results presented and discussed in this section are in two parts. The first one is concerned 
with the effect of gravity modulation in one-g terrestrial environment. The second part contains 
the non-linear analyses of the zero-gravity cases. 

Results at terrestrial one-g gravity. We consider a cavity fluid heated from above or below 
with a sinusoidally modulated gravity modulational field. Before discussing the gravity 
modulation cases, we chose a few Benard convection cases to serve as benchmark references for 
understanding the history of the development of convection flow and the evolution of physical 
phenomena. Both of the onset of convection cells and the subsequent dynamics are described. 
The Rayleigh-Benard instability is triggered by heating the lower horizontal plate. In Figure 2 
we show an example for a subcritical Rayleigh number Ra = 1600 and aspect ratio 0.5. There 
are four circulations symmetrically existing in the cavity and a conductive type isotherms which 
is linear distribution along the height of cavity. Because the system is heated at the Rayleigh 
number below the critical value, the flow will always keep in stable status. The physical mechanism 
responsible for the situation is due to the balance between the lower cells and the upper cells. 
The fluid particles in the lower cells release energy by moving up and the fluid particles in upper 
cells receiving energy in falling period11. Due to the insulating side walls effect, the particles 
move from the side walls to centre and go up or down and the status achieves balance at the 
centreline. The maintenance of this balance status strongly depends on the viscosity of fluid, 
temperature difference between top and bottom walls, the consequent expansion of fluid and 
gravitational acceleration. All of these factors are included in the dimensionless parameter Ra. 
Therefore, the Rayleigh number is chosen as an index for the stability of Rayleigh-Benard 
convection. In the next example, the results correspond to a Rayleigh number Ra = 4500 greater 
than the critical value. As the stable case, the flow contains four cells in the domain in the earlier 
period. Later this state will be broken owing to the higher Rayleigh number, and the lower cells 
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or upper cells are going to develop and force the other cells to shrink. In this case, the lower 
cells move up from the centre and expand size (see Figures 3a and b). At t = 1.5 the pattern 
shown in Figure 3c has fully developed. The strong convective flow makes the isotherms change 
from conductive type to convective type. Actually, the relation between convection flow and 
temperature distribution has mutual influence. Although the flow influences the temperature 
distribution, the temperature gradient with a component which is orthogonal to the gravitational 
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field will enforce the circulation. Following the interaction, the flow finally developed a complete 
convective flow field. According to Gresho and Sani1, at this Rayleigh number, a modulation 
amplitude of η = 19.6 and modulation frequency of ω = 1500 will stabilize this flow when gravity 
and temperature gradient are acting along the same direction. The results obtained by using 
these parameters are displayed in Figure 4a. The main circulations change from two to four 
with two secondary circulations in each one and the magnitude of stream function becomes 
weaker when compared to the case with η = 0. Due to the g-jitter stabilizing the flow field, the 
heat transfer mechanism is conductive and not convective as it is in the no g-jitter case (see 
Figure 3c). Next, a random modulation example is investigated for the simulation of typical 
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environment with the above parameters. A temporal random phase angle is induced in the 
source term between 0 and 2n. The time-averaged results display in Figure 4b show four 
counter-rotating vortices of higher intensity than the periodic case shown in Figure 4a. The 
time-averaged temperature contours demonstrate a weak convective nature of the flow. 
Compared with the sinusoidal modulation results, the random modulation is more marginally 
excitatory with the same maximum amplitude. An extensive study for normal terrestrial 
conditions, that is for one-g gravity, is given elsewhere10. Table 3 shows the comparison of 
maximum stream function value with the results reported by Danabasoglu and Biringen7 for 
different amplitudes and directions. A close agreement can be seen. 

In the cases of smaller aspect ratios, more cells are subsequently created in the cavity with 
η = 0. The history of circulation development is an important information for understanding 
the final results. In earlier period, similarly it is a two-layer cellular pattern as in Figure 5a for 
Ra = 3000, Ar = 0.25. The circulation in the central portion are weaker than the cells far from 
the centre. If the flow is unstable, the central portion balance state will disappear and one of 
the two layers is going to develop stronger. After the circulation in the central portion becomes 
more and more strong, the shear flow effect resulting from the central circulation will force the 
cells next to it to become unstable. Basically, the flow is symmetric, so the circulations are 
symmetrically distributed in the domain as in Figure 5. Similar symmetric results are existed in 
the Ar = 0.33 case. The results shown in Figure 6 are results for Ra = 3000 and Ar = 0.33. But 
these symmetric situations are easily to be disturbed by perturbation and are altered to other 
patterns. In this study, we applied a perturbation as used by Goldirsh et al.12 

δθ = Am exp[-((x - x0)2 + ( y - y0)2)/C with Am = 0.01, (x0, y0) = (0.25,0.25) and C = 1 for 
0.5 sec, then removed the perturbation. The final results are shown in Figure 6ƒ and the results 
cannot go back to the original pattern as shown in Figure 6e. According to literature some 

Table 3 Comparison of maximum 

Ra = 4500, ω = 1400 

η = 19.6 (vertical jitter) 
η — 0.1 (vertical jitter) 
η = 19.6 (horizontal jitter) 
Η = 0.1 (horizontal jitter) 

stream function value (calculated by 20 x 40 mesh and 100 time steps per period) 

Present method 

0.0288 
4.37 
8.53 
6.30 

Danabasoglu and Biringen7 

0.0292 
4.57 
8.76 
6.49 
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workers12-14 solutions obtained in this research are in good agreement with their physical 
description. 

Results at zero-gravity environment. The focus is put on the effects of gravity modulation and 
direction in a zero-gravity environment. According to the practical applications, a low Prandtl 
number material, such as liquid metal, is a typical sample for investigating flow field and heat 
transfer in the zero-gravity environment. In these calculations, we set the thermal diffusivity 
a = 2.2 x 10-5m2/sec, kinematic viscosity v = 1.54 x 10-7m2/sec and thermal expansion 
β = 10 - 4 K - 1 as the liquid metal material properties. When the flow field exists in a g-jitter 
environment with maximum amplitude 10-3g, characteristic length 18 cm and maximum 
temperature difference 100 K, we calculated the Prandtl number Pr = 7 x 10-3 and Rayleigh 
number Ra - 1.771 x 105 by applying these values and the material properties. The purpose 
for the study in zero-gravity is to investigate the modulation direction and frequency influence, 
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so the Prandtl number and Rayleigh number are fixed to the above values for all the calculations 
in this section to make the comparison easy. 

In the first set of computations, the cavity was subjected to vertical gravity modulation along 
the direction of the temperature gradient, and a different modulation frequency was chosen for 
each case to find the critical value for the heat transfer mechanism changing from conduction 
to convection. We started with a high frequency ω = 4543 case and chose η = 1. That means 
that the maximum modulation amplitude 10-3g is included in the Rayleigh number calculation. 
The results are shown in Figure 7. The streamlines include four primary calculations (lower left 
and upper right circulations in counterclockwise direction, and lower right and upper left 
circulations in clockwise direction) with a counter-rotating small circulation at each corner of 
the cavity and the temperature contours display a conductive pattern. The point data history, 
owing to the small modulation, demonstrates a small variation; and the temperature data contour 
is close to a straight line. In addition, the low Prandtl number results in the physical phenomena 
changing slowly and taking much more computational time than the terrestrial cases. 

In the subsequent case presented here, the ω is reduced to 200 in order to investigate the 
effect of the frequency. Figure 8 includes the time-averaged streamlines, isotherms along with 
the point data history. The streamlines show eight primary circulations existing which means 
that the circulations developing from the small circulations in the previous case have become 
stronger. As ω is continuously reduced to 45.5, the fluid domain contains only four circulations 
(see Figure 9) which are the circulations developing from the small circulations which stay at 
corners as shown in Figure 7 and dominating the fluid flow field. The heat transfer mechanism 
is still conductive, so point data history of temperature remains a straight line. The velocity 
variation is a synchronous response and the flow field is still unexcited. 

When the frequency is reduced to 20, the physical phenomena display a dramatic change 
where the four-circulation balance status was broken. The flow field includes two main 
circulations and six small circulations at the corners and vertical centreline near the wall area. 
The flow field is excited to strong convection phenomena, even the temperature contours clearly 
demonstrating the strong convective patterns (see Figure 10). In fact, we can find other details 
from the point data history which shows that the velocity and temperature vary subharmonically 
with the forcing function. The averaged results shown here are obtained by averaging the data 
of one forcing cycle corresponding to half of the velocity cycle or temperature cycle. If we did 
the average by using the other half velocity cycle, the contours would be the same pattern but 
the eddies would appear at opposite locations symmetric to the horizontal centreline with the 
current pattern. 

According to the above results, the first three cases are unexcited examples where the flow is 
a synchronous response; but the fourth is an excited and subharmonic response case. As the 
frequency is reduced, the strength of the circulation is increased. Here ω approaching 20 is the 
critical frequency range for flow transferring from a synchronous characteristic to a subharmonic 
characteristic. 

The second set of computations is focused on horizontal gravity modulation effect which 
means the modulation direction is perpendicular to the temperature gradient direction. Like the 
terrestrial examples, the flow is more sensitive to the horizontal modulation effect. As in the 
previous procedure, the high frequency case is studied first in order to investigate the excitation 
frequency; and the other parameters are the same as vertical modulation cases. We started from 
ω = 450 and listed the results in Figure 11. There are four counter-rotating circulations in the 
fluid domain. The lower left and upper right circulations are in clockwise direction but the other 
two in counter rotation. A conductive heat transfer pattern exists in temperature distribution. 
Both the velocity and temperature response are synchronous with the forcing function as evident 
from Figure 11. Because the conductive mechanism dominates the heat transfer phenomena, the 
time-averaged Nusselt number (defined as — ∂θ/∂y) along the hot wall is almost close to unity. 

We continuously reduced the frequency to find the difference. The streamlines, isotherms and 
point data history are similar to ω = 450 results, but the stream function values are increased. 
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When the frequency was diminished to ω = 200, the flow started to be excited. In the fluid 
domain, there are a big clockwise circulation resulting from the combination of the two 
circulations existing in the upper right and the lower left portion in the previous case and two 
counterclockwise circulations shrinking small at the corners, as seen in Figure 12. The temperature 
distribution displays a small slope, the location of peak of the time-averaged Nusselt number 
moves to the right hand side, and the values become bigger because of the convective effect. 

As the frequency is continuously decreased to 85, the flow field develops a strongly convective 
flow where small eddies start to appear in addition to the primary clockwise vortex (see Figure 
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13). The point data history shows deviation from the periodicity which is likely caused by the 
strong non-linear effect. The strongly excited flow distorts the temperature distribution and 
creates a high gradient which results in high Nusselt number values. 

From the previous analyses, it is evident that a further reduction of ω will be interesting since 
a range of resonant frequencies for the cavity flow is being approached. Therefore, in Figure 14, 
the results of ω = 40 case are listed. The point data history shows that the flow field displays 
strong deviations from sinusoidal response and the temperature contours demonstrate a strongly 
distorted pattern. The time-averaged results shown here are made by choosing an arbitrary 
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forcing function period, so it does not represent each cycle. The strong distortion is regarded 
as a consequence of the non-linear coupling of higher modes. 

In summary, these examples investigated the horizontal modulation effect in zero-gravity to 
provide the critical frequency for the transformation from conduction to convection. In addition, 
due to the coupling of high mode excitation, the low frequency cases gradually behave deviations 
from sinusoidal point data history. 

For further interest, the investigation of the effect of removing the gravity modulation from 
a modulated flow field was also explored. The final results of the horizontal modulation ω = 85 
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were selected as the initial condition for the calculation without a forcing function. In Figure 
15, the point data history illustrates the velocity and temperature asymptotically approaching 
a steady constant value; and it is evident the temperature oscillations were damped much faster 
than the velocity, as is expected from the high heat diffusive nature of the low Pr materials. The 
flat isothermal contours and weak stream function values explain the system regressing to a 
conductive state. 

Finally, a different Prandtl number case is conducted to understand the differences caused by 
Prandtl number. Similarly, the horizontal modulation ω = 85 results were selected as a reference. 
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We changed the Pr to be 0.71 corresponding to the air property and kept the other parameters 
as the reference case. For this case (see Figure 16), the maximum value of the stream function 
occurs at an off-centre location in the cavity. The time-averaged results contain four circulations; 
and the strength of circulations are the same order, which is quite different from the reference 
case. The temperature field, as expected, is more excitatory than the low Prandtl number case. 
The point data history shows a strong non-linearity of the flow and the time-averaged Nusselt 
number displays a higher value according to the higher Prandtl number corresponding to the 
higher heat transfer rate. 



444 B. RAMASWAMY 

CONCLUDING REMARKS 

In this study, a rectangular cavity flow affected by sinusoidal gravity modulation in terrestrial 
and zero-gravity situations was successfully simulated by a semi-implicit projection finite element 
method. The stable phenomena with gravity modulation amplitudes frequency in the terrestrial 
condition were studied first. Then a parametric study of the effect of gravity modulation direction 
and frequency for zero-gravity environment was also included. Under these simulations, the 
sinusoidal gravity modulation indicated synchronous and subharmonic responses are in good 
agreement with Gresho and Sani's analyses. 

In the zero-gravity conditions, it is a common in both vertical and horizontal modulation 
cases that the heat transfer mechanism transfers from conduction to convection along with the 
increase of vortex strength as the frequency diminishes. In the vertical modulation condition, 
the synchronous response exists in high frequency conductive states and gradually the convection 
enhances its effect resulting in the appearance of a subharmonic response with the decrease of 
frequency. On the other hand, instead of displaying the subharmonic response at low frequency, 
the horizontal modulation cases display deviations from sinusoidal point data response and 
create small eddies in the flow domain. Furthermore, the change of the Pr to the higher value 
exhibits an obviously different result from the low Pr case and forces all the eddies to be of 
same order. 

In conclusion, this research provides information about the influence of gravity modulation 
effect in the fluid flow and heat transfer phenomena for a Benard convection. Following the 
broad applications of the Benard convection with gravity modulation in low-gravity crystal 
growth process, this study will benefit the understanding of this process. Furthermore, the 
investigation of the combination of gravity modulation in a thermal driven cavity flow with 
surface tension effect will be another important topic of research interest for the real simulation 
of crystal growth process. 
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